Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Am Nat ; 203(5): 604-617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635367

RESUMO

AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.


Assuntos
Ciclídeos , Lagos , Animais , Ciclídeos/genética , Opsinas/genética , Expressão Gênica , Ecossistema
2.
Eur J Cell Biol ; 103(2): 151406, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547677

RESUMO

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.

3.
BMC Ecol Evol ; 24(1): 29, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433185

RESUMO

The African buffalo, Syncerus caffer, is a key species in African ecosystems. Like other large herbivores, it plays a fundamental role in its habitat acting as an ecosystem engineer. Over the last few centuries, African buffalo populations have declined because of range contraction and demographic decline caused by direct or indirect human activities. In Mozambique, historically home to large buffalo herds, the combined effect of colonialism and subsequent civil wars has created a critical situation that urgently needs to be addressed. In this study, we focused on the analysis of genetic diversity of Syncerus caffer caffer populations from six areas of Mozambique. Using genome-wide SNPs obtained from ddRAD sequencing, we examined the population structure across the country, estimated gene flow between areas under conservation management, including national reserves, and assessed the inbreeding coefficients. Our results indicate that all studied populations of Syncerus caffer caffer are genetically depauperate, with a high level of inbreeding. Moreover, buffaloes in Mozambique present a significant population differentiation between southern and central areas. We found an unexpected genotype in the Gorongosa National Park, where buffaloes experienced a dramatic population size reduction, that shares a common ancestry with southern populations of Catuane and Namaacha. This could suggest the past occurrence of a connection between southern and central Mozambique and that the observed population structuring could reflect recent events of anthropogenic origin. All the populations analysed showed high levels of homozygosity, likely due to extensive inbreeding over the last few decades, which could have increased the frequency of recessive deleterious alleles. Improving the resilience of Syncerus caffer caffer in Mozambique is essential for preserving the ecosystem integrity. The most viable approach appears to be facilitating translocations and re-establishing connectivity between isolated herds. However, our results also highlight the importance of assessing intraspecific genetic diversity when considering interventions aimed at enhancing population viability such as selecting suitable source populations.


Assuntos
Bison , Búfalos , Humanos , Animais , Búfalos/genética , Ecossistema , Endogamia , Moçambique
4.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260540

RESUMO

Hybridization has been recognized as an important driving force for evolution, however studies of the genetic consequence and its cause are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the central American genus Xiphophorus were proposed to have evolved with multiple ancient and ongoing hybridization events, and served as a valuable research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genome resource and its annotation of all 26 Xiphophorus species. On this dataset we resolved the so far conflicting phylogeny. Through comparative genomic analyses we investigated the molecular evolution of genes related to melanoma, for a main sexually selected trait and for the genetic control of puberty timing, which are predicted to be involved in pre-and postzygotic isolation and thus to influence the probability of interspecific hybridization in Xiphophorus . We demonstrate dramatic size-variation of some gene families across species, despite the reticulate evolution and short divergence time. Finally, we clarify the hybridization history in the genus Xiphophorus genus, settle the long dispute on the hybridization origin of two Southern swordtails, highlight hybridizations precedes speciation, and reveal the distribution of hybridization ancestry remaining in the fused genome.

5.
J Morphol ; 285(1): e21663, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100744

RESUMO

Pelvic fins are a characteristic structure of the vertebrate Bauplan. Yet, pelvic fin loss has occurred repeatedly across a wide diversity of other lineages of tetrapods and at least 48 times in teleost fishes. This pelvic finless condition is often associated with other morphological features such as body elongation, loss of additional structures, and bilateral asymmetry. However, despite the remarkable diversity in the several thousand cichlid fish species, none of them are characterized by the complete absence of pelvic fins. Here, we examined the musculoskeletal structure and associated bilateral asymmetry in Midas cichlids (Amphilophus cf. citrinellus) that lost their pelvic fins spontaneously in the laboratory. Due to this apparent mutational loss of the pelvic girdle and fins, the external and internal anatomy are described in a series of "normal" Midas individuals and their pelvic finless sibling tankmates. First, other traits associated with teleost pelvic fin loss, the genetic basis of pelvic fin loss, and the potential for pleiotropic effects of these genes on other traits in teleosts were all reviewed. Using these traits as a guide, we investigated whether other morphological differences were associated with the pelvic girdle/fin loss. The mean values of the masses of muscle of the pectoral fin, fin ray numbers in the unpaired fins, and oral jaw tooth numbers did not differ between the two pelvic fin morphotypes. However, significant differences in meristic values of the paired traits assessed were observed for the same side of the body between morphotypes. Notably, bilateral asymmetry was found exclusively for the posterior lateral line scales. Finally, we found limited evidence of pleiotropic effects, such as lateral line scale numbers and fluctuating asymmetry between the Midas pelvic fin morphotypes. The fast and relatively isolated changes in the Midas cichlids suggest minor but interesting pleiotropic effects could accompany loss of cichlid pelvic fins.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Nadadeiras de Animais/anatomia & histologia , Músculos , Fenótipo
6.
Ecol Evol ; 13(9): e10523, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711500

RESUMO

The evolution of convergent phenotypes is one of the most interesting phenomena of repeated adaptive radiations. Here, we examined the repeated patterns of thick-lipped or "rubberlip" phenotype of cyprinid fish of the genus Labeobarbus discovered in riverine environments of the Ethiopian Highlands, East Africa. To test the adaptive value of thickened lips, identify the ecological niche of the thick-lipped ecomorphs, and test whether these ecomorphs are the products of adaptive divergence, we studied six sympatric pairs of ecomorphs with hypertrophied lips and the normal lip structure from different riverine basins. Trophic morphology, diet, stable isotope (δ15N and δ13C) signatures, as well as mtDNA markers and genome-wide SNP variation, were analyzed. Our results show that thick-lipped ecomorphs partition trophic resources with generalized ecomorphs in only one-half of the examined sympatric pairs despite the pronounced divergence in lip structure. In these thick-lipped ecomorphs that were trophically diverged, the data on their diet along with the elevated 15N values suggest an invertivorous specialization different from the basal omnivorous-detritivouros feeding mode of the generalized ecomorphs. Genetic data confirmed an independent and parallel origin of all six lipped ecomorphs. Yet, only one of those six thick-lipped ecomorphs had a notable genetic divergence with sympatric non-lipped ecomorphs based on nuclear SNPs data (F ST = 0.21). Sympatric pairs can be sorted by combinations of phenotypic, ecological, and genetic divergence from an ecologically non-functional mouth polymorphism via ecologically functional polymorphism to a matured speciation stage via divergent evolution.

7.
Mol Ecol ; 32(21): 5798-5811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750351

RESUMO

Evolutionary novelties-derived traits without clear homology found in the ancestors of a lineage-may promote ecological specialization and facilitate adaptive radiations. Examples for such novelties include the wings of bats, pharyngeal jaws of cichlids and flowers of angiosperms. Belonoid fishes (flying fishes, halfbeaks and needlefishes) feature an astonishing diversity of extremely elongated jaw phenotypes with undetermined evolutionary origins. We investigate the development of elongated jaws in a halfbeak (Dermogenys pusilla) and a needlefish (Xenentodon cancila) using morphometrics, transcriptomics and in situ hybridization. We confirm that these fishes' elongated jaws are composed of distinct base and novel 'extension' portions. These extensions are morphologically unique to belonoids, and we describe the growth dynamics of both bases and extensions throughout early development in both studied species. From transcriptomic profiling, we deduce that jaw extension outgrowth is guided by populations of multipotent cells originating from the anterior tip of the dentary. These cells are shielded from differentiation, but proliferate and migrate anteriorly during the extension's allometric growth phase. Cells left behind at the tip leave the shielded zone and undergo differentiation into osteoblast-like cells, which deposit extracellular matrix with both bone and cartilage characteristics that mineralizes and thereby provides rigidity. Such bone has characteristics akin to histological observations on the elongated 'kype' process on lower jaws of male salmon, which may hint at common conserved regulatory underpinnings. Future studies will evaluate the molecular pathways that govern the anterior migration and proliferation of these multipotent cells underlying the belonoids' evolutionary novel jaw extensions.

8.
Genome Biol Evol ; 15(5)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140021

RESUMO

The genomic loci generating both adaptive and maladaptive variation could be surprisingly predictable in deeply homologous vertebrate structures like the lips. Variation in highly conserved vertebrate traits such as the jaws and teeth in organisms as evolutionarily disparate as teleost fishes and mammals is known to be structured by the same genes. Likewise, hypertrophied lips that have evolved repeatedly in Neotropical and African cichlid fish lineages could share unexpectedly similar genetic bases themselves and even provide surprising insight into the loci underlying human craniofacial anomalies. To isolate the genomic regions underlying adaptive divergence in hypertrophied lips, we first employed genome-wide associations (GWAs) in several species of African cichlids from Lake Malawi. Then, we tested if these GWA regions were shared through hybridization with another Lake Malawi cichlid lineage that has evolved hypertrophied lips seemingly in parallel. Overall, introgression among hypertrophied lip lineages appeared limited. Among our Malawi GWA regions, one contained the gene kcnj2 that has been implicated in the convergently evolved hypertrophied lips in Central American Midas cichlids that diverged from the Malawi radiation over 50 million years ago. The Malawi hypertrophied lip GWA regions also contained several additional genes that cause human lip-associated birth defects. Cichlid fishes are becoming prominent examples of replicated genomic architecture underlying trait convergence and are increasingly providing insight into human craniofacial anomalies such as a cleft lip.


Assuntos
Ciclídeos , Fenda Labial , Animais , Humanos , Fenda Labial/genética , Ciclídeos/genética , Genoma , Genômica , Fenótipo , Lagos , Filogenia , Mamíferos/genética
9.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247387

RESUMO

Recent genomic analyses of evolutionary radiations suggest that ancient introgression may facilitate rapid diversification and adaptive radiation. The loach genus Triplophysa, a genus with most species endemic to Tibetan Plateau, shows ecological diversity and rapid evolution and represents a potential example of adaptive radiation linked to the uplift of the Tibetan Plateau. Here, we interrogate the complex evolutionary history of Triplophysa fishes through the analysis of whole-genome sequences. By reconstructing the phylogeny of Triplophysa, quantifying introgression across this clade, and simulating speciation and migration processes, we confirm that extensive gene flow events occurred across disparate Triplophysa species. Our results suggest that introgression plays a more substantial role than incomplete lineage sorting in underpinning phylogenetic discordance in Triplophysa. The results also indicate that genomic regions affected by ancient gene flow exhibit characteristics of lower recombination rates and nucleotide diversity and may associate with selection. Simulation analysis of Triplophysa tibetana suggests that the species may have been affected by the Gonghe Movement in the third uplift of the Tibetan Plateau, resulting in founder effects and a subsequent reduction in Ne.


Assuntos
Altitude , Cipriniformes , Animais , Filogenia , Tibet , Cipriniformes/genética , Adaptação Fisiológica/genética
10.
Sci China Life Sci ; 66(6): 1213-1230, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37204606

RESUMO

The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.


Assuntos
Ecossistema , Peixe-Zebra , Animais , Mudança Climática , Fenótipo
11.
Pharmaceutics ; 15(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111587

RESUMO

The blood-brain barrier (BBB) is a major hurdle for the development of systemically delivered drugs against diseases of the central nervous system (CNS). Because of this barrier there is still a huge unmet need for the treatment of these diseases, despite years of research efforts across the pharmaceutical industry. Novel therapeutic entities, such as gene therapy and degradomers, have become increasingly popular in recent years, but have not been the focus for CNS indications so far. To unfold their full potential for the treatment of CNS diseases, these therapeutic entities will most likely have to rely on innovative delivery technologies. Here we will describe and assess approaches, both invasive and non-invasive, that can enable, or at least increase, the probability of a successful drug development of such novel therapeutics for CNS indications.

12.
Sci China Life Sci ; 66(7): 1554-1568, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802318

RESUMO

The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus. However, the genetic basis of these adaptations in Tibetan catfishes remains elusive. In this study, we performed comparative genomic analyses based on the chromosome-level genome of Glyptosternum maculatum in family Sisoridae and detected some proteins with conspicuously high evolutionary rates in particular in genes involved in skeleton development, energy metabolism, and hypoxia response. We found that the hoxd12a gene evolved faster and a loss-of-function assay of hoxd12a supports a potential role for this gene in shaping the enlarged fins of these Tibetan catfishes. Other genes with amino acid replacements and signatures of positive selection included proteins involved in low temperature (TRMU) and hypoxia (VHL) responses. Functional assays reveal that the G. maculatumTRMU allele generates more mitochondrial ATP than the ancestral allele found in low-altitude fishes. Functional assays of VHL alleles suggest that the G. maculatum allele has lower transactivation activity than the low-altitude forms. These findings provide a window into the genomic underpinnings of physiological adaptations that permit G. maculatum to survive in the harsh environment of the Tibetan Himalayas that mirror those that are convergently found in other vertebrates such as humans.


Assuntos
Peixes-Gato , Humanos , Animais , Peixes-Gato/genética , Tibet , Adaptação Fisiológica/genética , Aclimatação , Hipóxia/genética , Altitude
13.
Gen Comp Endocrinol ; 334: 114210, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646326

RESUMO

Prolactin (PRL) is a multifunctional hormone of broad physiological importance, and is involved in many aspects of fish reproduction, including the regulation of live birth (viviparity) and both male and female parental care. Previous research suggests that PRL also plays an important reproductive role in syngnathid fishes (seahorses, pipefish and seadragons), a group with a highly derived reproductive strategy, male pregnancy - how the PRL axis has come to be co-opted for male pregnancy remains unclear. We investigated the molecular evolution and expression of the genes for prolactin and its receptor (PRLR) in an evolutionarily diverse sampling of syngnathid fishes to explore how the co-option of PRL for male pregnancy has impacted its evolution, and to clarify whether the PRL axis is also involved in regulating reproductive function in species with more rudimentary forms of male pregnancy. In contrast to the majority of teleost fishes, all syngnathid fishes tested carry single copies of PRL and PRLR that cluster genetically within the PRL1 and PRLRa lineages of teleosts, respectively. PRL1 gene expression in seahorses and pipefish is restricted to the pituitary, while PRLRa is expressed in all tissues, including the brood pouch of species with both rudimentary and complex brooding structures. Pituitary PRL1 expression remains stable throughout pregnancy, but PRLRa expression is specifically upregulated in the male brood pouch during pregnancy, consistent with the higher affinity of pouch tissues for PRL hormone during embryonic incubation. Finally, immunohistochemistry of brood pouch tissues reveals that both PRL1 protein and PRLRa and Na+/K+ ATPase-positive cells line the inner pouch epithelium, suggesting that pituitary-derived PRL1 may be involved in brood pouch osmoregulation during pregnancy. Our data provide a unique molecular perspective on the evolution and expression of prolactin and its receptor during male pregnancy, and provide the foundation for further manipulative experiments exploring the role of PRL in this unique form of reproduction.


Assuntos
Prolactina , Smegmamorpha , Animais , Masculino , Feminino , Prolactina/genética , Prolactina/metabolismo , Reprodução/genética , Peixes/metabolismo , Smegmamorpha/genética , Receptores da Prolactina/genética
14.
Mol Ecol ; 32(6): 1398-1410, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35403749

RESUMO

The evolution of sex chromosomes and their differentiation from autosomes is a major event during genome evolution that happened many times in several lineages. The repeated evolution and lability of sex-determination mechanisms in fishes makes this a well-suited system to test for general patterns in evolution. According to current theory, differentiation is triggered by the suppression of recombination following the evolution of a new master sex-determining gene. However, the molecular mechanisms that establish recombination suppression are known from few examples, owing to the intrinsic difficulties of assembling sex-determining regions (SDRs). The development of forward-genetics and long-read sequencing have generated a wealth of data questioning central aspects of the current theory. Here, we demonstrate that sex in Midas cichlids is determined by an XY system, and identify and assemble the SDR by combining forward-genetics, long-read sequencing and optical mapping. We show how long-reads aid in the detection of artefacts in genotype-phenotype mapping that arise from incomplete genome assemblies. The male-specific region is restricted to a 100-kb segment on chromosome 4 that harbours transposable elements and a Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master sex-determining functions repeatedly. Our data suggest that amhr2Y originated by an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another chromosome. Duplication of anti-Mullerian genes is a common route to establishing new sex determiners, highlighting the role of molecular parallelism in the evolution of sex determination.


Assuntos
Ciclídeos , Masculino , Animais , Ciclídeos/genética , Receptores de Fatores de Crescimento Transformadores beta , Elementos de DNA Transponíveis
15.
Nat Commun ; 13(1): 7610, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494371

RESUMO

In the highly derived syngnathid fishes (pipefishes, seadragons & seahorses), the evolution of sex-role reversed brooding behavior culminated in the seahorse lineage's male pregnancy, whose males feature a specialized brood pouch into which females deposit eggs during mating. Then, eggs are intimately engulfed by a placenta-like tissue that facilitates gas and nutrient exchange. As fathers immunologically tolerate allogenic embryos, it was suggested that male pregnancy co-evolved with specific immunological adaptations. Indeed, here we show that a specific amino-acid replacement in the tlx1 transcription factor is associated with seahorses' asplenia (loss of spleen, an organ central in the immune system), as confirmed by a CRISPR-Cas9 experiment using zebrafish. Comparative genomics across the syngnathid phylogeny revealed that the complexity of the immune system gene repertoire decreases as parental care intensity increases. The synchronous evolution of immunogenetic alterations and male pregnancy supports the notion that male pregnancy co-evolved with the immunological tolerance of the embryo.


Assuntos
Smegmamorpha , Feminino , Animais , Masculino , Smegmamorpha/genética , Comportamento Sexual Animal , Peixe-Zebra , Reprodução/genética , Mutação
16.
Nat Commun ; 13(1): 5893, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202802

RESUMO

Homoploid hybrid speciation (i.e., hybrid speciation without a change in ploidy) has traditionally been considered to be rare in animals. Only few accepted empirical examples of homoploid hybrid speciation in nature exist, and in only one previous case (insects) was it convincingly shown that this process occurred in complete sympatry. Here, we report an instance of sympatric homoploid hybrid speciation in Midas cichlid fishes in Crater Lake Xiloá, Nicaragua. The hybrid lineage, albeit at an early stage of speciation, has genomically and phenotypically diverged from both of its two parental species. Together with a distinct stable isotope signature this suggests that this hybrid lineages occupies a different trophic niche compared to the other sympatric Midas cichlid species in Crater Lake Xiloá.


Assuntos
Ciclídeos , Simpatria , Animais , Ciclídeos/genética , DNA Mitocondrial , Especiação Genética , Lagos , Simpatria/genética
17.
Evol Dev ; 24(5): 158-170, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971657

RESUMO

Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, agouti-related-peptide 2 (agrp2), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify agrp2 to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that agrp2 is associated with the loss of the nonstereotypic oblique stripe of Mylochromis mola. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair Haplochromis sauvagei and Pundamilia nyererei, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences-that most importantly also do not include agrp2-are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Perfilação da Expressão Gênica , Lagos , Fenótipo , Transcriptoma
18.
Ecol Evol ; 12(7): e9077, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866021

RESUMO

Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species. We resolved the Tropheini into seven monophyletic genera and discovered one to be polyphyletic. The polyphyletic genus, Petrochromis, represents three convergent origins of the algae grazing trophic specialization. This repeated evolution of grazing may have been facilitated by adaptive introgression as we found evidence for gene flow among algae grazing genera. We also found evidence of gene flow among algae browsing genera, but gene flow was restricted between herbivorous and carnivorous genera. Furthermore, we observed no evidence supporting a hybrid origin of this radiation. Our molecular evolutionary analyses suggest that opsin genes likely evolved in response to selection pressures associated with trophic ecology in the Tropheini. We found surprisingly little evidence of positive selection in coding regions of jaw-shaping genes in this trophically diverse lineage. This suggests low degrees of freedom for further change in these genes, and possibly a larger role for regulatory variation in driving jaw adaptations. Our study emphasizes Tropheini cichlids as an important model for studying the evolution of trophic specialization and its role in speciation.

19.
Cell ; 185(15): 2621-2622, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868265

RESUMO

Large and complex datasets have made artificial intelligence (AI) an invaluable tool for discovery across biological research. We asked experts how AI has impacted their work. Their experiences and perspectives offer thoughtful insights into potential offered by AI for their fields.


Assuntos
Inteligência Artificial
20.
Proc Biol Sci ; 289(1974): 20220266, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538779

RESUMO

Phylogenetic comparative studies suggest that the direction of deviation from bilateral symmetry (sidedness) might evolve through genetic assimilation; however, the changes in sidedness inheritance remain largely unknown. We investigated the evolution of genital asymmetry in fish of the family Anablepidae, in which males' intromittent organ (the gonopodium, a modified anal fin) bends asymmetrically to the left or the right. In most species, males show a 1 : 1 ratio of left-to-right-sided gonopodia. However, we found that in three species left-sided males are significantly more abundant than right-sided ones. We mapped sidedness onto a new molecular phylogeny, finding that this left-sided bias likely evolved independently three times. Our breeding experiment in a species with an excess of left-sided males showed that sires produced more left-sided offspring independently of their own sidedness. We propose that sidedness might be inherited as a threshold trait, with different thresholds across species. This resolves the apparent paradox that, while there is evidence for the evolution of sidedness, commonly there is a lack of support for its heritability and no response to artificial selection. Focusing on the heritability of the left : right ratio of offspring, rather than on individual sidedness, is key for understanding how the direction of asymmetry becomes genetically assimilated.


Assuntos
Ciprinodontiformes , Genitália , Animais , Ciprinodontiformes/genética , Masculino , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...